129 research outputs found

    Design Principles of Pancreatic Islets: Glucose-dependent Coordination of Hormone Pulses

    Full text link
    Pancreatic islets are functional units involved in glucose homeostasis. The multicellular system comprises three main cell types; β\beta and α\alpha cells reciprocally decrease and increase blood glucose by producing insulin and glucagon pulses, while the role of δ\delta cells is less clear. Although their spatial organization and the paracrine/autocrine interactions between them have been extensively studied, the functional implications of the design principles are still lacking. In this study, we formulated a mathematical model that integrates the pulsatility of hormone secretion and the interactions and organization of islet cells and examined the effects of different cellular compositions and organizations in mouse and human islets. A common feature of both species was that islet cells produced synchronous hormone pulses under low- and high- glucose conditions, while they produced asynchronous hormone pulses under normal glucose conditions. However, the synchronous coordination of insulin and glucagon pulses at low glucose was more pronounced in human islets that had more α\alpha cells. When β\beta cells were selectively removed to mimic diabetic conditions, the anti-synchronicity of insulin and glucagon pulses was deteriorated at high glucose, but it could be partially recovered when the re-aggregation of remaining cells was considered. Finally, the third cell type, δ\delta cells, which introduced additional complexity in the multicellular system, prevented the excessive synchronization of hormone pulses. Our computational study suggests that controllable synchronization is a design principle of pancreatic islets.Comment: 24 pages, 7 figure

    Decrease in Ins\u3csup\u3e+\u3c/sup\u3eGlut2\u3csup\u3eLO\u3c/sup\u3e β-cells with advancing age in mouse and human pancreas

    Get PDF
    The presence and location of resident pancreatic β-cell progenitors is controversial. A subpopulation of insulin-expressing but glucose transporter-2-low (Ins+Glut2LO) cells may represent multipotent pancreatic progenitors in adult mouse and in human islets, and they are enriched in small, extra-islet β-cell clusters (\u3e5 β cells) in mice. Here, we sought to identify and compare the ontogeny of these cells in mouse and human pancreata throughout life. Mouse pancreata were collected at postnatal days 7, 14, 21, 28, and at 3, 6, 12, and 18 months of age, and in the first 28 days after β-cell mass depletion following streptozotocin (STZ) administration. Samples of human pancreas were examined during fetal life (22-30 weeks gestation), infancy (0-1 year), childhood (2-9), adolescence (10-17), and adulthood (18-80). Tissues were analyzed by immunohistochemistry for the expression and location of insulin, GLUT2 and Ki67. The proportion of β cells within clusters relative to that in islets was higher in pancreas of human than of mouse at all ages examined, and decreased significantly at adolescence. In mice, the total number of Ins+Glut2LO cells decreased after 7 days concurrent with the proportion of clusters. These cells were more abundant in clusters than in islets in both species. A positive association existed between the appearance of new β cells after the STZ treatment of young mice, particularly in clusters and smaller islets, and an increased proportional presence of Ins+Glut2LO cells during early β-cell regeneration. These data suggest that Ins+Glut2LO cells are preferentially located within β-cell clusters throughout life in pancreas of mouse and human, and may represent a source of β-cell plasticity

    Altered Islet Composition and Disproportionate Loss of Large Islets in Patients with Type 2 Diabetes

    Get PDF
    Human islets exhibit distinct islet architecture with intermingled alpha- and beta-cells particularly in large islets. In this study, we quantitatively examined pathological changes of the pancreas in patients with type 2 diabetes (T2D). Specifically, we tested a hypothesis that changes in endocrine cell mass and composition are islet-size dependent. A large-scale analysis of cadaveric pancreatic sections from T2D patients (n = 12) and non-diabetic subjects (n = 14) was carried out combined with semi-automated analysis to quantify changes in islet architecture. The method provided the representative islet distribution in the whole pancreas section that allowed us to examine details of endocrine cell composition in individual islets. We observed a preferential loss of large islets (>60 µm in diameter) in T2D patients compared to non-diabetic subjects. Analysis of islet cell composition revealed that the beta-cell fraction in large islets was decreased in T2D patients. This change was accompanied by a reciprocal increase in alpha-cell fraction, however total alpha-cell area was decreased along with beta-cells in T2D. Delta-cell fraction and area remained unchanged. The computer-assisted quantification of morphological changes in islet structure minimizes sampling bias. Significant beta-cell loss was observed in large islets in T2D, in which alpha-cell ratio reciprocally increased. However, there was no alpha-cell expansion and the total alpha-cell area was also decreased. Changes in islet architecture were marked in large islets. Our method is widely applicable to various specimens using standard immunohistochemical analysis that may be particularly useful to study large animals including humans where large organ size precludes manual quantitation of organ morphology

    Islet Formation during the Neonatal Development in Mice

    Get PDF
    The islet of Langerhans is a unique micro-organ within the exocrine pancreas, which is composed of insulin-secreting beta-cells, glucagon-secreting alpha-cells, somatostatin-secreting delta-cells, pancreatic polypeptide-secreting PP cells and ghrelin-secreting epsilon-cells. Islets also contain non-endocrine cell types such as endothelial cells. However, the mechanism(s) of islet formation is poorly understood due to technical difficulties in capturing this dynamic event in situ. We have developed a method to monitor beta-cell proliferation and islet formation in the intact pancreas using transgenic mice in which the beta-cells are specifically tagged with a fluorescent protein. Endocrine cells proliferate contiguously, forming branched cord-like structures in both embryos and neonates. Our study has revealed long stretches of interconnected islets located along large blood vessels in the neonatal pancreas. Alpha-cells span the elongated islet-like structures, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. We propose that islet formation occurs by a process of fission following contiguous endocrine cell proliferation, rather than by local aggregation or fusion of isolated beta-cells and islets. Mathematical modeling of the fission process in the neonatal islet formation is also presented

    Use of vitamin supplements and risk of total cancer and cardiovascular disease among the Japanese general population: A population-based survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the popular use of vitamin supplements and several prospective cohort studies investigating their effect on cancer incidence and cardiovascular disease (CVD), scientific data supporting their benefits remain controversial. Inconsistent results may be partly explained by the fact that use of supplements is an inconsistent behavior in individuals. We examined whether vitamin supplement use patterns affect cancer and CVD risk in a population-based cohort study in Japan.</p> <p>Methods</p> <p>A total of 28,903 men and 33,726 women in the Japan Public Health Center-based Prospective Study cohort, who answered questions about vitamin supplement use in the first survey from 1990-1994 and the second survey from 1995-1998, were categorized into four groups (never use, past use, recent use, and consistent use) and followed to the end of 2006 for cancer and 2005 for CVD. Sex-specific hazard ratios (HRs) and 95% confidence intervals (95% CIs) were used to describe the relative risks of cancer and CVD associated with vitamin supplement use.</p> <p>Results</p> <p>During follow-up, 4501 cancer and 1858 CVD cases were identified. Multivariate adjusted analysis revealed no association of any pattern of vitamin supplement use with the risk of cancer and CVD in men. In women, consistent use was associated with lower risk of CVD (HR 0.60, 95% CI 0.41-0.89), whereas past (HR 1.17, 95% CI 1.02-1.33) and recent use (HR 1.24, 95% CI 1.01-1.52) were associated with higher risk of cancer.</p> <p>Conclusions</p> <p>To our knowledge, this is the first prospective cohort study to examine simultaneously the associations between vitamin supplement use patterns and risk of cancer and CVD. This prospective cohort study demonstrated that vitamin supplement use has little effect on the risk of cancer or CVD in men. In women, however, consistent vitamin supplement use might reduce the risk of CVD. Elevated risk of cancer associated with past and recent use of vitamin supplements in women may be partly explained by preexisting diseases or unhealthy background, but we could not totally control for this in our study.</p

    One-Step Biotinylation of Cellulose Paper by Polymer Coating to Prepare a Paper-Based Analytical Device

    Get PDF
    Cellulose paper has strong potential as an analytical platform owing to its unique characteristics. In the present study, we investigated a procedure for functionalizing the surface of cellulose paper by dip-coating a mixture of a functional polymer and a perfluoroalkylated surfactant (surfactant 1). The functional polymer comprised a mixture of methyl methacrylate and poly(ethylene glycol) methacrylate monomers. The monomer ratio in the functional polymer affected the hydrophilicity and water absorbance of the cellulose paper after dip-coating. Furthermore, the presence of surfactant 1 during dip-coating promoted the surface segregation of poly(ethylene glycol) (PEG) moieties in the polymer, which enhanced the hydrophilicity, prevented nonspecific protein adsorption, and maintained the water absorbance of the dip-coated cellulose paper. Dip-coating with another functional polymer containing biotin groups produced a cellulose paper with a biotin-decorated surface in a one-step procedure. The displayed biotin groups immobilized avidin on the surface, and the PEG moieties in the polymer prevented nonspecific protein adsorption. We then immobilized a thrombin-binding DNA aptamer on the avidin-immobilized cellulose paper to prepare a paper-based analytical device. It is possible to visualize thrombin in model solutions and serum using the paper-based analytical device

    Simultaneous collection of the portal and superior vena cava blood in conscious rats defined that intestinal epithelium is the major site of glucuronidation, but not sulfation and methylation, of quercetin

    Get PDF
    Quercetin is a flavonoid with many physiological effects. Absorbed quercetin is rapidly conjugated in the intestinal epithelium and liver. Different positional isomers of quercetin conjugates have different physiological properties. However, the mechanisms of quercetin conjugation in the intestine are not fully clarified. We examined the regioselective quercetin conjugate formation in the intestine after oral administration of quercetin glycosides, by simultaneous sampling of blood from the portal vein and superior vena cava, and quantifying various positional isomers of quercetin glucuronides and sulfates in conscious rats. Concentrations of quercetin glucuronides were higher in blood from the portal vein than the superior vena cava, showing that glucuronidation mainly occurred in the intestine. Such differences were not observed for quercetin sulfates. Regioselectivity of the intestinal glucuronidation in quercetin hydroxyl groups were 7->3'->3->4'-OH. Quercetin was mainly sulfated on 3'-OH at 30 min, but on 4'-OH at 240 min
    corecore